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ABSTRACT 
 

A relationship between traffic flow variables and crash characteristics can greatly help 
the traffic engineer in the field to arrive at appropriate congestion mitigation measures that not 
only alleviate congestion and save time but also reduce the probability of crashes.  Currently, no 
such decision support tool is readily available to traffic engineers who now mainly make vital 
decisions using their experience and intuition. 

 
This project investigated the feasibility of developing a methodology in which real-time 

data can be used to decide on diversion strategies that also consider crash risk.  Models showing 
the interaction between flow and density (occupancy) and the relationship of these traffic flow 
parameters to crash characteristics were developed for specific sites in the Hampton Roads area 
of Virginia.  These models were then used as the basis for developing a methodology that 
incorporates crash risk in identifying congestion strategies that consider crash risk.   

 
The results show that it is feasible to incorporate crash risk in developing congestion 

mitigation strategies. To use the methodology developed in this study, it is necessary to develop 
the appropriate models for each site that relate flow and occupancy and crashes and occupancy.  
 
 



FINAL REPORT 
 

FEASIBILITY OF INCORPORATING CRASH RISK IN DEVELOPING CONGESTION 
MITIGATION MEASURES FOR INTERSTATE HIGHWAYS:   

A CASE STUDY OF THE HAMPTON ROADS AREA 
 

Nicholas J. Garber, Ph.D. 
Faculty Research Scientist 

and 
Professor of Civil Engineering 

 
Sankar Subramanyan 

Graduate Research Assistant 
 
 
 

INTRODUCTION 
 

The use of real-time data for congestion forecasting and management is expected to 
increase significantly in the next few years.  It is, however, essential that crash risk be 
incorporated in congestion management.  Most of the research in crash modeling has focused on 
developing analytical models to predict crashes and relate them to speed variance and other 
geometric characteristics.  However, not much research has been done to relate the real-time 
traffic data obtained from the Virginia Department of Transportation’s (VDOT) Smart Traffic 
Centers to crashes.  This type of relationship can be used to study the impact of congestion 
mitigation strategies, for example, traffic diversion, on crashes.  The hypothesis is that diverting 
traffic from one highway to another may have a significant impact on the probability of crashes 
on one or both highways.   

 
Many research projects conducted in traffic flow modeling relate the three basic flow 

variables (speed, density, and flow).  However, not much research has been done to ascertain the 
relationship of these traffic flow variables to crash characteristics.  It is important to develop 
models that describe the relationship between crash characteristics and the three basic traffic 
flow variables for which real-time data can be obtained at the Smart Traffic Centers.  Such 
models would greatly enhance the selection of appropriate congestion mitigation measures that 
would not only alleviate congestion and save time but also reduce the probability of crashes.  
Currently, no such decision-support tool is readily available.  Engineers make the vital decisions 
regarding traffic diversion and congestion mitigation based on their experience and intuition.   

 
 
 

PURPOSE AND SCOPE 
 

The objective of this project was to investigate the feasibility of developing a 
methodology in which real-time data could be used to decide on mitigation strategies that also 
consider crash risk.  This study investigated the feasibility of developing such a decision-support 
tool using the Hampton Roads area of Virginia as a case study. 
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The Hampton Roads area was used in this project because real-time traffic data from the 
Hampton Roads Smart Traffic Center were available in the Smart Travel Laboratory of the 
University of Virginia and the Virginia Transportation Research Council (VTRC).   

 
The objectives of this study were as follows:   
 
�� Determine the relationship between time mean speed and space mean speed as a 

precursor for the modeling effort. 
 

�� Develop relationship between time mean speed and occupancy. 
 
�� Develop traffic flow models relating occupancy and flow.  

 
�� Establish relationships between the occupancy and the number of crashes.  

 
�� Evaluate the feasibility of incorporating crash risk in selecting strategies for 

congestion mitigation.   
 
 
 

METHODOLOGY AND RESULTS 
 

To achieve the objectives of the study, a methodology was used that consisted of six 
tasks: 
 

1. A literature review was conducted to identify research in traffic flow and crash 
modeling. 

 
2. Sites in the Hampton Roads area were identified  for which adequate crash data (to 

carry out crash modeling) and consistent traffic flow data were available. 
 

3. Spot speed data were collected at these sites. 
 

4. The relationship between time mean speed and space mean speed for each site was 
developed. 

 
5. The relationship between flow and occupancy for each study site was developed.  

 
6. The relationship among flow, occupancy, and number of crashes for each site was 

established. 
 

7. A procedure for identifying congestion mitigation measures was developed using the 
relationship among flow, occupancy, and number of crashes for the selected sites. 
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Task 1: Literature Review 
 

A review of research in traffic flow modeling and crash modeling was carried out using 
the Transportation Research Information Service (TRIS) and sources at the VTRC Library and 
the University of Virginia Library.  Several traffic flow models (both single regime and multi 
regime) that relate flow, speed, and density were identified.  Research in crash modeling and 
relating crash characteristics to traffic flow variables was also identified.   

 
 
Traffic Flow Modeling 
 

Traffic stream models provide the fundamental relationships of macroscopic traffic 
stream characteristics, which include flow, speed, and density characteristics.  Macroscopic 
traffic flow models describe the traffic flow in terms of these three flow variables and are 
generally adequate for most practical purposes and have been widely used in the planning, 
design, and operation of transportation facilities.1  These relationships are for uncongested (low 
occupancies with demand traffic flow less than or approaching capacity) and congested (higher 
occupancies with demand traffic flow higher than capacity or approaching jam condition) flow 
conditions. 
 

Macroscopic models can be broadly classified into two groups: single-regime and multi-
regime models.  Single-regime models,1-21 for example the Greenshield model, represent the 
uncongested and congested flow regimes with a single model.  The early macroscopic models 
were single-regime models.  Multi-regime models represent the uncongested flow and congested 
flow regimes with separate models.   
 

The microscopic modeling of traffic characteristics is concerned with the individual time 
headways between vehicles, speeds of individual vehicles passing a point or short segment 
during a specified period, and the individual distance headways between vehicles.  The car-
following models, which describe how one vehicle follows another vehicle, are microscopic 
models.  The car-following models developed by the researchers at General Motors1 take the 
form: 

 
Response = f (sensitivity, stimulus). 

 
The response is represented by the acceleration (or deceleration) of the following vehicle and the 
stimulus represented by the relative velocity of the lead and following vehicle.  These models are 
of particular importance as they facilitated the discovery of the mathematical bridge between 
microscopic and macroscopic theories of traffic flow. 
 
 
Crash Rates and Traffic Characteristics 
 
Crash Rate Vs. Traffic Volume 

 
Several studies were identified that relate crash rates and traffic volumes.22-29  It has been 

generally assumed that crash rates increase with increasing traffic volume, the reasoning being 
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that the higher interaction among vehicles at higher volumes increases the probability of crashes.  
However, several research efforts have shown the opposite to be true.  Intuitively this seems to 
be true as the crash rate of reported crashes should start decreasing once the demand flow 
reaches a certain level (congested condition) and the traffic enters a stop and go phase.   
 

Studies by Pfundt22 and Gwynn23 showed a U-shaped relationship between crash rate and 
traffic volumes.  The U-shaped curve indicates that the crash rates are higher when the traffic 
volume is either very high or very low.  Several other studies by Hall and Pendelton24 and 
Brodsky and Hakkert25 provided possible explanations for this phenomenon.  As identified in 
these studies, under very high traffic volumes, all vehicles travel at about the same lower speed, 
which in turn decreases the speed variance, resulting in lower crash rates. 
 

Several models have related expected crash frequency (number of crashes per unit time) 
to traffic flow (number of vehicles per unit time).  A few of these were identified in the research 
work carried out by Abraham and Hauer.26  These include the exponential model and the 
quadratic model.  The exponential function is the most commonly used.  With this model, the 
crash frequency always increases with traffic volume.  Hence, this model cannot be used to 
predict single vehicle crash rates as these rates do not indefinitely increase in volume.  The 
quadratic function is less commonly used.  Its main advantage is that it can represent the 
situation when the expected number of crashes decreases after a particular traffic flow is reached.   
 

Lundy27 found that the crash rates for four-, six-, and eight-lane freeways normally 
increase with an increasing average daily traffic (ADT).  In addition, the rate of increase in 
crashes per 10,000 vehicles was higher for four-lane highways than for six-lane and eight-lane 
highways. 
 

The Poisson regression model developed by Jovanis and Chang28 reveals that automobile 
and truck crashes are directly related to automobile and truck travel.  It also reveals a decrease in 
the auto-auto collisions and an increase in the auto-truck collisions as the truck vehicle miles 
traveled (VMT) increases.   
 

Hall and Pendelton24 determined the relationship between the hourly crash rates and the 
ratio of traffic volume to capacity (v/c).  Though the v/c rarely exceeded 0.5, an interesting result 
was obtained from this study.  Crash rates decrease with increasing volumes and v/c up to 0.5.  
The highest crash rates occurred between 2 A.M. and 5 A.M. when the traffic volume was the 
least.  However, these were single-vehicle crashes and were attributed to the dark driving 
conditions.   

 
Brodsky and Hakkert25 obtained contradictory results in their study in which they 

determined the relationship between crash rates and traffic volumes.  Their analysis of primary 
and secondary highways showed that the injury crash rates increased with increasing traffic 
volumes.  However, the relationship is the opposite for interstate highways.  This is attributed to 
the minimal chances of head-on multi-vehicle and pedestrian crashes on divided interstate 
highways compared to primary and secondary highways.   
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 Persaud et al.29 used an exponent for the traffic volume to estimate the expected number 
of crashes in their study to evaluate safety in Ontario, Canada. 
 
 
Crash Rate Vs Speed of Traffic 
 

The average speed, posted speed limit, and speed standard deviation are the important 
speed characteristics that studies have identified as affecting the crash rates at a given location.  
A study on speed and crashes by the Research Triangle Institute30 identified the extent to which 
the speed deviation from the mean speed plays an important role in crash rates.  The study 
revealed that the probability of crashes increases with increasing deviation from the average 
speed.  This was also cited as the reason for the increased crash rates at lower volumes in several 
studies that developed models describing the relationship between crash rates and traffic 
volumes.30-32  
 

Garber and Gadiraju31 found that the speed variance decreases as average speed 
increases.  In addition, their research revealed that the crash rate increases with increasing speed 
variance for all road types and that the crash rate does not necessarily increase with an increase 
in the average speed on the highways. 
 

In a study by Garber and Ehrhart,32 models relating the crash rates to the speed, flow, and 
geometric characteristics were developed for different types of highways.  The research 
considered data from freeways (104.7 and 88.6 km/h [65 and 55 mph]) and four-lane and two-
lane non-freeways in Virginia.  The research revealed that linear and robust regression models 
did not adequately relate speed and crash characteristics.  However, the multivariate ratio of 
polynomial form was successful in describing the relationships among crash rate and speed 
standard deviation, mean speed, and flow per lane.  For the four types of highways considered, 
specific models relating the crash rates to speed, speed standard deviation, and flow per lane 
were developed.  The results established that the crash rate is not linearly related to speed 
characteristics but is related in a complicated fashion.  In addition, the developed models of the 
multivariate ratio of polynomial form showed distinct trends between the speed, flow, and 
geometric characteristics and the crash rate, which can be used to control the occurrence of 
crashes.  Garber and Joshua33 investigated the major factors associated with large truck crashes, 
including the effect of highway facility type and geometry and percentage of trucks in the traffic 
stream, and developed mathematical models relating these factors to the probability of crash 
occurrence 

 
 
Summary 

 
 The nature of the traffic models differs from one site to another on the same highway 

depending on the geometric and traffic characteristics of the site and the time for which data 
were collected.  Hence, it is important to specify when and where on the roadway the data were 
collected to allow a clear understanding of the relationship between the traffic flow variables.   
 

The literature on crash and traffic characteristics was inconsistent in relating traffic 
volume to crash rates.  Although some studies indicated an increase in crash rate with increasing 
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volume, others indicated otherwise.  The literature review also identified the standard deviation 
of speed to be an important speed characteristic that affects crash rate.  Although research has 
related crash rates to traffic volumes and highway geometric characteristics, very little research 
has been done to relate number of crashes to the flow or occupancy.  Garber and Ehrhart32 
identified several models that relate crash rates to speed and flow characteristics.  However, this 
effort resulted in very complicated models that cannot be easily used by the engineer in the field.  
.   
 

Task 2:  Identifying the Study Sites 
 

The first step was to identify several sites in the Hampton Roads area for which 
consistent traffic flow data were available through the Smart Travel Laboratory.  These sites 
were chosen from I-64 and I-264. Since the main objective of the study was to relate the flow 
variables to crash rates for the highways, the selection of the sites also depended on the 
availability of complete crash records for the 4 years (1995, 1996, 1997, and 1998) used in the 
study.  The crash data were obtained from VDOT’s Highway Traffic Records Information 
System (HTRIS) database.  The following were the four criteria considered in identifying the 
study sites: 
 

1. availability of consistent traffic data from the Smart Travel Laboratory  
 
2. availability of crash data for at least 40 crashes (to allow meaningful crash models)  

from the HTRIS database 
 

3. sufficient distance from ramps and interchanges (at least 0.2 mi) to be considered a 
basic freeway segment  

 
4. availability of a safe location to collect the spot speed data in the field. 

 
Based on these criteria, the nine sites listed in Table 1 were chosen.  Table 1 also gives 

the interstate on which each site is located and the major roads on either end of the location.  The 
station ID gives the ID of the detector station located on the site.  The length of the site is the 
distance between the ramps (major roads) on either side.  Of the nine sites, only four could be 
used for the study (see Table 2) because the sensors at the other sites were not functioning 
properly.   

 
  

Table 1.  Initial Sites Considered 
 

Site No. Location Length (m) (ft) Station ID 
1 64W: Bay Ave.  & Granby St. 1402 (4600) 125 
2 64W: I-264 & Indian River Rd. 3353 (11000) 4 
3 64W: I-264 & Rt. 13 2467 (8100) 40 
4 64E: 1-94 & Norview Ave. 1158 (3800) 83 
5 64E: I-264 & Indian River Rd. 3353 (11000) 22 
6 264W: Independence & Rosemont 3200 (10500) 183 
7 264W: Rosemont & Lynnhaven 2286 (7500) 194 
8 264E: Independence & Rosemont 3200 (10500) 182 
9 264E: Rosemont & Lynnhaven 2286 (7500) 195 
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Table 2.  Final Study Sites 
 

Site Location Station 
1 64W: I-264 & Indian River Rd. 4 
2 64E: I-264 & Indian River Rd. 22 
3 264W: Independence & Rosemont 183 
4 264E: Independence & Rosemont 182 

 
 
 

Task 3:  Data Collection 
 

This step involved the following three subtasks: 
 

1. collection of spot speed data for the chosen sites in the field to compute space mean 
and time mean speeds 

 
2. compilation of the traffic flow data (time mean speed, flow, and occupancy) for the 

selected sites from the Smart Travel Laboratory 
 

3. compilation of the crash data for the selected sites from the HTRIS database. 
 

Spot Speed Data 
 
 The models are based on time mean speed and occupancy rather than the more commonly 
used variables of space mean speed and density in theoretical models.  Occupancy and time 
mean speed were used in developing the models as they could be obtained directly from the 
Smart Travel Laboratory and are readily available to traffic engineers for decision making.   
 

To collect the spot speed data in the field, a computer program was written that assigned 
a time stamp to each spot speed entered into the computer.  This was of particular importance as 
it allowed for the computing time mean speed and space mean speed for a specific time interval 
and modeling the relationship between the two speeds.   
 

A laser gun with an accuracy of �1.6 km/h (1 mph) was used to collect the spot speed 
data in the field.  At each of the nine initial sites, a safe spot was identified to collect the field 
data during a preliminary tour.  The person who operated the laser gun called out the spot speed-
reading, which was entered into the computer immediately.  The program that was running in the 
computer automatically assigned the time when the speed was recorded (the lag between the time 
when the vehicle was spotted and the time it was entered in the computer was negligible).  Spot 
speeds were collected for time periods ranging from 75 to 90 min at the nine sites.   

 
The spot speeds were collected only for the vehicles on the outer lane.  This is because 

the angle at which the laser beam hits the vehicle influences the spot speed recording greatly 
(known as the cosine effect).  The greater the angle, the greater is the error in the laser gun 
reading.  As it is not possible to keep this angle to acceptable levels for the inner lanes because of 
the short length of the highway under consideration, it was decided that the spot speeds of the 
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outer lane vehicles only would be collected.  Also, since the objective of this study was only to 
develop models relating the time mean and space mean speeds computed from the spot speeds, 
the lane from which the data were collected did not affect the analysis.   

 
 
Traffic Data from the Smart Travel Laboratory 

 
The Smart Travel Laboratory is connected to the Hampton Roads Smart Traffic Center 

and the Northern Virginia Smart Traffic Center.  The laboratory receives time mean speed, 
traffic volume, and occupancy data from the 203 detector stations on 31 km (19 mi) of freeway 
and associated interchanges in the I-264/I-64 corridor (this corresponds to more than 1,200 loop 
detectors) in the Hampton Roads system.  The laboratory receives the traffic flow data every 2 
min from the detector stations, and these data are archived in an Oracle database.   
 

By identifying the station numbers at the chosen sites, the traffic flow data were thus 
obtained directly from the Smart Travel Laboratory in a spreadsheet format.  This allowed for the 
selection of specific time periods that had reasonable traffic data for modeling purposes.   

 
 
Data Mining and Data Screening 
 

Data screening tests developed by Turochy and Smith34 were used to eliminate erroneous 
data from the traffic database.  The following five criteria were used to eliminate potentially 
erroneous data:  
 

1. occupancy maximum threshold (90%) 
 

2. collection length minimum threshold (90 seconds) 
 

3. average vehicle length (AVL) minimum and maximum thresholds (9 and 60 ft)  
 

4. maximum volume threshold for records with zero occupancy (set at corresponding 
volume for an average vehicle length of 10 ft and 2% occupancy) 

 
5. overall maximum volume threshold (3,100 vehicles per hour per lane). 

 
The threshold values used for the criteria were obtained from research in data screening 

for traffic management systems34 and the range of data obtained from the Smart Travel 
Laboratory (i.e., the minimum and the maximum values for each parameter from the Smart 
Travel Laboratory database).  In addition, prescreening consisted of identifying records with 
negative values in speed, volume, or occupancy.  Thus, records with negative speed, flow, or 
occupancy were eliminated.  The occupancy stuck (i.e., occupancy remains at the same level for 
an unreasonably long period of time) phenomenon was also included in the final screening test 
module.  This test eliminates records in which the occupancy appears to be stuck at a particular 
value. 
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The Excel database generated by the AnalyX tool, a software application developed in 
the laboratory to access and process data in the Oracle database, has the same fields as the 
original file, which include the following: 

 
 

1. data and time of the traffic data 
 
 
2. station ID 
 

 
3. sensor number (each station has more than one sensor corresponding to the number of 

lanes at the location) 
 

 
4. collection length, which indicates the time period for which the traffic data were 

collected 
 

 
5. number of vehicles spotted during the collection length 
 

 
6. time mean speed (in mph) of the vehicles spotted during the collection length 
 

 
7. occupancy of the vehicles (in %) spotted during the collection length  
 

 
8. incident ID. 

 
 

Table 3 shows part of the Excel file for the site on I-264E represented by station 182, and 
Table 4 gives the description of the fields.  The incident ID field was the only field that was not 
used in this project.  The incident ID field data are incorrect and do not represent the incidents at 
the detector stations.  Crash data for the different sites were obtained from the HTRIS database.   
 

 
Table 3.  Traffic Flow Data from Smart Travel Laboratory 

 
DATEX SENS ORID SPEED VOLUME OCC COLLLENGHT LANESWIDTH INCIENTID

11/2/99 8:00 182 43 111 4 123 4 0 
11/2/99 8:02 182 54 95 3 118 4 0 
11/2/99 8:04 182 53 104 3 130 4 0 
11/2/99 8:06 182 52 97 3 122 4 0 
11/2/99 8:08 182 48 86 4 117 4 0 
11/2/99 8:10 182 51 95 3 122 4 0 
11/2/99 8:12 182 44 115 4 117 4 0 
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Table 4.  Fields in Smart Travel Laboratory Traffic Database 
 

Field Remarks 
DATEX Date and time 
SENSORID Station number 
SPEED Time mean speed (in mph) 
VOLUME Number of vehicles detected 
OCC Occupancy (in %) 
COLLLENGTH Collection length (in sec) 
LANESWIDTH Number of lanes reporting data 
INCIDENTID Incident ID 

 
Data Reduction 
 

The traffic data for the four chosen study sites were obtained from the database using the 
AnalyX software.  The next step was to reduce the data to develop the traffic flow models.  Only 
the weekday traffic flow data were included for the final study.  Time mean speed and 
occupancy were used in the modeling step.  Hence, these two fields required no conversion and 
were used directly.  The volume was converted to equivalent hourly flow by use of the following 
formula 
 

Equivalent hourly flow = (Number of vehicles)*3,600/(Collection length in sec)  
 

Table 5 shows the number of records included in modeling the traffic flow for the 
selected sites.  Each record corresponds to a flow, occupancy, and speed value for a 2-min 
interval obtained from the Smart Travel Laboratory database.  Figures 1 through 3 show the final 
scatter plots for flow versus occupancy, speed versus flow, and speed versus occupancy 
respectively for site 1.  These scatter plots are similar to those identified in several research 
efforts involving freeway segments.1,8,10-12  

 
Table 5.  Number of Traffic Flow Records for Study Sites 

 
Site No. Station No. No. Records 

1 4 6,443 
2 22 8,367 
3 183 5,996 
4 182 10,513 

 

 
 

Figure 1.  Flow vs. Occupancy Scatter Plot for Site 1 
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Figure 2.  Speed vs. Flow Scatter Plot for Site 1  
 
 
 
 

 
 

Figure 3.  Speed vs. Occupancy Scatter Plot for Site 1 
 
 
 
 

Crash Data from HTRIS Database 
 
The crash data for the four sites were obtained from the HTRIS database and the police 

reports.  The police reports were used to obtain the crash ID for each crash at each site.  The 
crash ID was then used to obtain other details about the crash such as time and date of 
occurrence, distance from the interchange, type of accident, and number of vehicles involved in 
the crash from the HTRIS database.  A crash database was then developed that had all the 
acceptable crashes for the different sites (acceptable crashes are those that occurred at a distance 
of at least 0.32 km (0.2 mi) from the interchange in the basic freeway segment).  In addition, 
only the crashes that occurred during weekdays were included in the study.  The estimated time 
of occurrence of each crash was obtained from the police reports.  A sample spreadsheet showing 
the crash ID and the fields of interest for some of the crashes at the site on I-264E (site 4) is 
shown in Table 6.  Figures 4 through 7 show the hourly distributions of crashes for each site. 
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Table 6.  Crash Data for Site 4 on 44E 
 

Crash ID Date Time 
950620820 2/13/95 6:39 
951372116 5/12/95 18:30 
951390823 2/13/95 6:39 
951792563 6/19/95 2:20 
952350577 8/1/95 8:55 
953562071 12/20/95 18:00 
953562072 12/20/95 22:00 
953562073 12/20/95 17:15 

 
 

 
 

Figure 4.  Crash Distribution for Site 1 
 

 
 

Figure 5.  Crash Distribution for Site 2 
 

 
 

Figure 6.  Crash Distribution for Site 3 
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Figure 7.  Crash Distribution for Site 4 
 
 

Task 4: Modeling Time Mean Speed and Space Mean 
 

Models relating the time mean speeds and space mean speeds were obtained for the study 
sites using regression analysis.  Time mean speed, also known as arithmetic mean speed, is 
defined as the arithmetic mean of the speeds of vehicles passing a point on a highway during an 
interval of time.15  Space mean speed, also known as harmonic speed, is defined as the harmonic 
mean of the speeds of vehicles passing a point on a highway during an interval of time.15 
 

The time mean and space mean speeds were computed using the spot speed data collected 
in the field.  As mentioned previously, spot speed data were collected in the field for each site for 
of 75 to 90 min.  The data set was divided into 30-second time bins to compute the time mean 
and space mean speeds.  The arithmetic average of the spot speeds of all vehicles observed 
during the intervals was used to obtain the time mean speed.  Similarly, the harmonic average of 
the spot speeds of all vehicles observed in the intervals was used to obtain the space mean speed.   
 

The assumption made here was that the speed of the vehicles remained the same over the 
short distance represented by the 30-sec interval.  Since all sites were basic freeway segments 
and the time interval was small, this assumption was reasonable.   
 

In the next step, curve fitting techniques were used to obtain the model that best 
represented the computed time mean and space mean speed data.  At least 150 data points were 
used for each site.  Linear regression was used to obtain the models for the observed data.  Linear 
regression was used because the observed scatter plots indicated a linear relationship between the 
two speeds for all the four sites.  The R-squared value was used as the criterion for choosing the 
best model.  The analysis was done in two ways.  In the first approach, the fitted curved was 
forced through the origin.  This is the general model that relates the time mean speed and the 
space mean speed obtained from the field spot speed data.   
 

The result of this analysis for site 1 is presented in Figure 8.  Similar results were 
obtained for the other three sites.  Table 7 shows the models obtained and the associated R2 

values for each site.  The results show that the time mean speed and space mean speed are related 
by a linear relationship with very little difference between the two for all the basic freeway 
segments considered in this study.  A similar study by Drake et al.3 also showed a linear 
relationship between the two speeds for freeway segments with little difference between the two.   
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Figure 8.  Space Mean Speed vs. Time Mean Speed for Site 1 
 
 
 

Table 7.  Space Mean Speed vs. Time Mean Speed Relationship (model forced through origin) 
 

Site Station Location Equation R-Squared 
1 4 64W: I-264 & Indian River Rd. FTM = 1.003*FSM 0.993 
2 22 64E: I-264 & Indian River Rd. FTM = 1.004*FSM 0.992 
3 183 264W: Independence & Rosemont FTM = 1.006*FSM 0.971 
4 182 264E: Independence & Rosemont FTM = 1.004*FSM 0.989 

        FTM = field time mean speed; FSM = field space mean speed. 
 

 
These results support the rationale for using time mean speed instead of space mean 

speed in developing the traffic flow models.  As there is an equipment error of approximately 
�1.6 km/h (�1 mph) in recording the spot speeds in the field, the use of time mean speed 
instead of space mean speed in traffic flow modeling for basic freeway segments does not 
introduce a significant statistical error in the analysis.  The models developed using time mean 
speed are more useful to the traffic engineer as he or she has access only to the time mean speed 
data from the traffic management centers.   

 
 

In the second approach, the fitted curve was not forced through the origin.  These models 
have an intercept that represents the maximum difference between the time mean and space 
mean speeds, which occurs at low speeds.  In addition, the difference between the two speeds 
becomes smaller with increasing speed, as can be seen from the equations in Table 8.   
 
 

Table 8.  Space Mean Speed vs. Time Mean Speed Relationship (model not forced through origin)  
 

Site Station Location Equation R-Squared 

1 4 64W: I-264 & Indian River Rd. FTM = 0.980*FSM + 2.1835 0.993 
2 22 64E: I-264 & Indian River Rd. FTM = 0.966*FSM + 3.5413 0.994 
3 183 264W: Independence & Rosemont FTM = 0.971*FSM + 3.2102 0.976 
4 182 264E: Independence & Rosemont FTM = 0.968*FSM + 3.3222 0.996 

      FTM = field time mean speed; FSM = field space mean speed. 
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Task 5:  Traffic Flow Modeling 
 

This step involved modeling the relationship between flow and occupancy for the chosen 
sites.  The scatter plots for flow versus occupancy rates were used in developing the flow-
occupancy models.   
 
 
Flow vs. Occupancy Modeling 
 

Visual inspection of the scatter plots for the four sites was used to identify the occupancy 
at capacity (the occupancy after which the flow starts decreasing from the maximum).  In 
addition, the number of regimes in the flow occupancy model was identified by visual inspection 
of the scatter plots.  The scatter plots indicated a clear two-regime distribution with a marked 
transition around the observed break point for all four study sites.  The breakpoint obtained from 
visual inspection of each site was used to split the entire range of data points into two regimes:  
the uncongested and the congested.   
 

The data for the two regimes were analyzed separately.  Regression analysis techniques 
were used to develop the models for the observed data, using the NCSS statistical software 
package.  Non-linear regression was used to obtain the models for the free flow regime as the 
free-flow regime showed a non-linear pattern for all the sites.  Robust regression (a regression 
technique that identifies outliers and minimizes their impact on the coefficient estimates) was 
used to obtain the models for the congested regime as the congested regime for all the sites 
indicated a linear pattern.  Models with high R2 values were obtained for all the sites indicating 
good fit with the observed data.  Three sites (sites 2, 3, and 4) had a second-order parabolic 
model for the free flow regime and a linear model for the congested flow regime.  Site 1 on I-64 
West had a third order model for the free flow regime and a linear model for the congested flow 
regime.  The third order model was chosen for site 1 since this model had a highest R2 value and 
fitted the observed data the best among all the models considered. 

 
Figures 9 through 12 show the results of the flow versus occupancy modeling for the four 

sites.  Tables 9 and 10 show the model equations and the corresponding R2 values for the free 
flow regimes and congested flow regimes for the four sites.   

 

  

Figure 9.  Flow vs. Occupancy Model for Site 1 
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Figure 10.  Flow vs. Occupancy Model for Site 2 
 
 

 
 

Figure 11.  Flow vs. Occupancy Model for Site 3 
 
 

 
 

Figure 12.  Flow vs. Occupancy Model for Site 4 
 

Table 9.  Flow vs.  Occupancy Modeling Results: Free Flow Regime  
Site Equation R-Squared 

1 F = 620.2866*O - 36.4690*O2 + 0.7487*O3 0.97 
2 F = 641.8901*O - 9.8075*O2 0.99 
3 F = 1101.652*O - 51.0303*O2 0.95 
4 F = 1049.362*O - 34.7705*O2 0.98 

                               F = flow, O = occupancy. 
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Table 10.  Flow vs. Occupancy Modeling Results: Congested Flow Regime 
 

Site Equation R-Squared 
1 F = 5091.255 - 88.5036*O 0.88 
2 F = 9003.047 - 103.239*O 0.76 
3 F = 7158.766 - 256.035*O 0.93 
4 F = 6773.952 - 132.269*O 0.83 

                               F = flow, O = occupancy. 
 

Table 11.  Optimum Occupancy and Capacity for Study Sites  
 

Site Station No. Lanes Optimum Occupancy (%) Capacity (veh/h) 
1 4 2 16 3655 
2 22 4 17 8078 
3 183 4 8 5548 
4 182 4 8 6170 

 
 

Table 11 gives the number of lanes, optimum occupancy (occupancy at maximum flow) 
and the capacity as predicted by the fitted models (for all the lanes) for the four study sites. 

 
The peak flow values for the two sites on I-64 were between 1,800 and 2,000 vehicles per 

hour per lane.  Using the truck percentages to convert these values to passenger cars per hour per 
lane yields a peak flows varying between 2,000 and 2,250 passenger cars per hour per lane.  
These values are similar to those specified in the Highway Capacity Manual 8 (HCM) for 
freeways (the HCM specifies an ideal capacity of 2,300 passenger cars per hour per lane).  
However, the maximum flows at sites 3 and 4 (both on I-264) were considerably lower than the 
HCM-specified capacity for freeways.  Several factors are identified by the HCM that affect the 
capacity of a highway. 8  These include the geometric characteristics (lane width, shoulder width, 
grade), truck percentage, percentage of commuters, spacing of interchanges, free flow speed, and 
number of lanes.  The two sites on I-264 have lanes 3.66 mm (12 ft) wide and shoulders wider 
than 1.83 mm (6 ft).  In addition, the terrain is level with no steep grades, and only weekday 
traffic data were used for this analysis.  Hence, it is reasonable to assume that most of the drivers 
are commuters.  The site has four lanes for each direction (plus one shoulder lane in each 
direction), and the interchange density is within the limit specified in the HCM (one interchange 
per 1.609 km [2 mi]) of the highway).8  The geometric characteristics of the road sections at 
which sites 3 and 4 were located were therefore not the cause of the relatively low values for the 
maximum flow at these sites. 
 

To determine whether the truck percentages at sites 3 and 4 affected the maximum flows, 
field data were collected to obtain the truck percentages at all sites.  The results indicated lower 
truck percentages at sites 3 and 4 than at sites 1 and 2, indicating that the relatively lower values 
of the peak flows at sites 3 and 4 were not due to the impact of higher truck percentages in the 
traffic streams.   
 

The HCM also indicates a strong correlation between the capacity of the freeway and the 
free flow speed.8  Sites 3 and 4 on I-264 have a lower free flow speed (96.6 km/h [60 mph]) than 
sites 1 and 2 on I-64, which had a free flow speed of about 104.7 km/h (65 mph).  This may be 
part of the reason for the lower capacity values for these two sites.   
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Task 6:  Relationship Between Occupancy and Crashes 
 
Occupancy vs. Crashes 
 

The crashes and their time of occurrence were obtained from the HTRIS database and the 
police reports.  The HTRIS database gives the time of occurrence of the crash to the nearest 
hour.  Since the estimated time of occurrence of the crash was needed to get the corresponding 
occupancy value from the traffic database, the police reports were used to get the estimated time 
of occurrence.  Table 12 shows the years and the number of crashes that were used in the final 
analysis for the four sites.   

Table 12.  Crash Data for Study Sites 
 

Site No. Station No. Years (for Crashes) No. Crashes 
1 4 1996-1998 150 
2 22 1996-1998 60 
3 183 1995-1998 74 
4 182 1995-1998 41 

 
The occupancy values corresponding to the crash times were obtained by averaging the 

occupancy values for the same times for the different days from the traffic data used in the flow 
vs. occupancy modeling.  The occupancy values thus obtained were broken into bins, and the 
number of crashes in each of these bins was identified.  This result was used to develop the 
occupancy vs. crash plots.  These plots for the four sites are shown in Figures 13 through 16. 

 

 
 

Figure 13.  Occupancy vs. Number of Crashes for Site 1 
 

 
 

Figure 14.  Occupancy vs. Number of Crashes for Site 2 
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Figure 15.  Occupancy vs. Number of Crashes for Site 3 
 
 

 
 

Figure 16.  Occupancy vs. Number of Crashes for Site 4 
 

 
Table 13 shows the non-linear models and the corresponding R2 values for the crash vs. 

occupancy models for the four sites.  As can be seen, the R2 values for the crash models are not 
very high.  However, the plot of the number of crashes vs. the occupancy does show a common 
pattern for the sites.  The number of crashes tends to increase with increasing occupancy and 
reaches a maximum well before the optimum occupancy (at which the flow reaches its maximum 
value).  In addition, almost all the crashes occurred in the uncongested regime.   

 
 

Table 13.  Crash Modeling Results for Study Sites 
 

Site Station Equation R-Squared 
1 4 C = 3.7996*O - 0.1858*O2 - 0.000336*O3 0.70 
2 22 C = 2.3953*O - 0.3729*O2 + 0.0354*O3-0.0012*O4 0.43 
3 183 C = 9.0651*O - 1.4206*O2 + 0.0271*O3 0.57 
4 182 C = 2.3875*O + 0.2399*O2 - 0.07936*O3   0.62 

        C = number of crashes; O = occupancy. 
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Speed Variance vs. Crashes 
 

As part of the crash modeling effort, the effect of speed variance on the crashes was also 
studied.  Several research efforts30-32 revealed a strong correlation between the number of crashes 
and the speed variance.  Hence, it was decided to verify this trend for the four study sites. 
 

The speed data obtained from the Smart Travel Laboratory were the average time mean 
speed of all vehicles the sensor detects over a 2-min period.  Thus, the data do not include the 
individual speeds of the vehicles.  So, the speed variance was calculated using these 2-min 
average time mean speed data.  Though this is not the exact speed variance estimate, it gives a 
good indication of how the speed variance changes over time of day and with occupancy.  The 
speed vs. occupancy plot described previously was used in this step.  For each occupancy value, 
the variance of all the speed data points (i.e., the 2-min values) was computed and a speed 
variance vs. occupancy plot was obtained for each site.  These plots are presented in Figures 17 
through 20.   Table 14 shows the speed variance vs. occupancy models and the corresponding R2 
values for the four sites. 

 
  

 
 

Figure 17.  Speed Variance vs. Occupancy for Site 1 
 
 

 
 

Figure 18.  Speed Variance vs. Occupancy for Site 2 
 
 



 21

 
 

Figure 19.  Speed Variance vs. Occupancy for Site 3  
 
 

 
 

Figure 20.  Speed Variance vs. Occupancy for Site 4 
 
 

Table 14.  Speed Variance vs. Occupancy  
 

Site Station Equation R-Squared 
1 4 SV = 7.9933*O - 0.8502*O2 + 0.023*O3 0.76 
2 22 SV = 1.8057*O - 0.2241*O2 + 0.0104*O3 0.82 
3 183 SV = 0.4661*O + 1.2206*O2 - 0.1548*O3    0.86 
4 182 SV = 11.2190*O - 1.4999*O2 + 0.0165*O3 0.74 

         SV = speed variance; O = occupancy. 
 

The models presented in the Figures 17 through 20 indicate that the speed variance 
increases with occupancy for all the sites up to a particular value and then starts decreasing.  This 
trend is similar to the relationship between number of crashes and the occupancy for all sites, 
indicating a strong correlation between speed variance and number of crashes.  The speed 
variance for higher occupancies could not be calculated because of the very few data points at 
high occupancies in the congested regime.  Hence, the models include only the occupancy values 
in the uncongested regime.  However, as seen from the crash models presented previously, most 
of the crashes occurred in the uncongested regime for all the study sites.  Thus, these models 
show the trend between the speed variance of the traffic stream and its influence on the number 
of crashes.  The trend is in line with results from research30-32 that show a strong correlation 
between speed variance and number of crashes. 
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Task 7:  Crash Risk and Congestion Mitigation Strategies 
 

The models developed for number of crashes and occupancy and flow and occupancy for 
the study sites were used to evaluate the feasibility of incorporating crash risk in identifying 
congestion mitigation strategies.  For all sites, the number of crashes increased with occupancy 
and reached a maximum before starting to decrease and becoming negligible at high 
occupancies.  This appears to be intuitively correct as congestion sets in at high occupancies and 
the speeds are considerably lower than the free mean speed.  This results in a fewer of crashes at 
higher occupancies.  In addition, most of the crashes occurred in the uncongested regime, where 
speeds were high and flows were below capacity.  In addition, the number of crashes reached a 
maximum at an occupancy level that was lower than the optimum occupancy.  The impact of 
these results is discussed here for each study site. 
 

Figures 21 through 24 show the flow and number of crashes over occupancy for the four 
sites.  These figures were used to show how a congestion mitigation strategy, in this case traffic 
diversion, can be implemented while the risk of crashes is also being considered.  (The darker 
curve represents the crash vs. occupancy model, and the lighter curve represents the flow vs. 
occupancy model.) 

 
 

 
 

Figure 21.  Flow, Number of Crashes vs. Occupancy for Site 1 
 
 

 
 

 
Figure 22.  Flow, Number of Crashes vs. Occupancy for Site 2 
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Figure 23.  Flow, Number of Crashes vs. Occupancy for Site 3 

 
 

 
 
 

Figure 24.  Flow, Number of Crashes vs. Occupancy for Site 4 
 
 
Number of Crashes, Flow, Occupancy, and Congestion Mitigation Strategies 
 
Site 1:  I-64W (Station 4) 
 

Figure 21 shows that the optimal occupancy (at capacity) was about 16 percent whereas 
the occupancy at which the number of crashes reached a maximum was 7 percent.  Only 16 of 
the 171 crashes occurred at occupancies greater than 16 percent, and none occurred at 
occupancies greater than 19 percent.  For occupancy values between 0 and 7 percent, a reduction 
in flow decreased the number of crashes.  However, at such a low occupancy range, the need for 
a congestion mitigation strategy is minimal.  For occupancy values between 7 and 16 percent 
(optimum occupancy at capacity), a reduction in flow increased the number of crashes.  Beyond 
16 percent occupancy, the flow and number of crashes decreased with increasing occupancy.   
 

The area of greatest interest is the occupancy range between 7 and 16 percent.  In this 
region, the number of crashes increased with flow and occupancy.  As flows approach capacity, 
the engineer may want to implement a congestion mitigation strategy (e.g., diversion of traffic) 
to improve the level of service (LOS) and prevent the onset of congestion and queue buildup.  If, 
for example, the engineer diverts traffic to the extent that the occupancy reduces to 12 percent, 
the expected number of crashes will increase.  Thus, for any occupancy in this range, when 
traffic is being diverted, the engineer should divert traffic such that the occupancy falls below 7 
percent to avoid an increase in the number of crashes. 
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Site 2:  I-64E (Station 22) 
 

Figure 22 shows that the optimal occupancy (at capacity) was 17 percent whereas the 
occupancy at which the number of crashes reached a maximum was about 12 percent.  In 
addition, all crashes occurred in the uncongested flow regime (occupancy less than 17 percent) 
and none occurred at occupancies greater than the optimum occupancy.  For occupancy values 
between 0 and 12 percent, a reduction in flow caused a decrease in the number of crashes.  
However, at such a low occupancy range, the need for reducing traffic volume is minimal.  For 
occupancy values between 12 and 17 percent (optimum occupancy at capacity), a reduction in 
flow increased the number of crashes.  In addition, this is the occupancy range at which the 
engineer may try to reduce demand by traffic diversion to prevent the onset of congestion.  Thus, 
for any occupancy in this range, the engineer should divert traffic such that the occupancy falls 
below 12 percent so that there is no significant increase in the number of crashes.   

 
 
Sites 3 and 4:  I-264E and I-264W (Stations 183 and 182) 
 

Figures 23 and 24 show that the optimal occupancy (at capacity) is 8 percent and the 
occupancy at which the number of crashes peak is about 4 percent.  In addition, all crashes 
occurred in the uncongested flow regime (occupancy less than 8 percent) and none occurred at 
occupancies greater than the optimum occupancy.  For occupancies between 0 and 4 percent, a 
reduction in flow caused a decrease in the number of crashes.  However, at such a low 
occupancy range, the need for a congestion mitigation strategy is minimal.  For occupancies 
between 4 and 8 percent (optimum occupancy at capacity), a reduction in flow increases the 
number of crashes.   
 

The area of greatest interest is the occupancy range between 4 and 8 percent.  In this 
region, because of the increasing flow (tending to capacity) and high speeds, the number of 
crashes increased with increasing flow and occupancy.  In addition, this is the occupancy range 
at which the engineer may want to reduce demand by implementing a congestion mitigation 
strategy such as traffic diversion to prevent congestion.  Thus, for any occupancy in this range, 
the engineer should divert traffic such that the occupancy falls below 4 percent so that there is no 
significant increase in the number of crashes.   

 
 
 

SUMMARY OF RESULTS 
 

Space Mean Speed vs. Time Mean Speed 
 

The analysis of the space mean speed and time mean speed for the four study sites 
indicated a linear relationship with little difference between the two.  In addition, the difference 
between the two speeds was high at lower speeds, decreased with increasing speeds, and became 
negligible at higher speeds.   
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Flow vs. Occupancy 
 

The flow occupancy models for the four sites indicated a two-regime model.  The free 
flow regime models for sites 2, 3, and 4 were second order with very gentle slopes, indicating a 
small drop in the speed with flow in this regime.  This is consistent with several recent research 
efforts,8-10, 33 which also showed a very small drop in speeds until flow tended to capacity.  The 
free flow model for site 1 was a third order model with a greater slope, indicating a greater drop 
in speed with flow.  This site has a very gentle change of slope between the two regimes.  A 
single-regime model was fitted for this site.  However, the two-regime model seemed to fit the 
observed data better than the single-regime model and hence was selected. 
 

The congested flow regime model for all the four sites is linear in nature.  This again is 
consistent with research done in the past. 
 
 

Number of Crashes Over Occupancy 
 

The distribution of the number of crashes with respect to occupancy yielded similar and 
interesting results for all sites.  The number of crashes tended to increase with increasing 
occupancy and started dropping after reaching a peak occupancy rates between 4 and 10 percent 
for all four sites.  In addition, the occupancy at which the number of crashes reached its peak was 
well below the optimum occupancy at which the flow reached the capacity. 
 
 

Relationship Between Speed Variance and Number of Crashes 
 

The relationship between speed variance and occupancy is similar to that between crashes 
and occupancy for all the sites, indicating a strong correlation between speed variance and crash 
characteristics.   

 
 
 

GUIDELINES FOR TRAFFIC ENGINEERS 
 

The results of the crash analysis for the selected sites indicate that the number of crashes 
tends to increase with increasing occupancy until a particular point, which occurs at occupancy 
rates between 4 and 10 percent.  After reaching a peak value, crashes start dropping with 
increasing occupancy.  The occupancy at which crashes reach a maximum is well below the 
optimum occupancy at which flow reaches capacity.  Although the specific values obtained from 
these models cannot be generalized to all sites, the results indicate a trend in the relationship 
between crashes and occupancy for freeway segments.  In addition, the models indicate the 
expected changes in the number of crashes with changing flow and occupancy.   
 

The traffic engineer in the field can use suitable traffic flow models to predict the 
occupancy resulting from diverting a selected volume of traffic.  The crash models can then be 
used to determine whether the new flow and occupancy conditions can be expected to cause an 
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increased number of crashes.  If the diversion does result in an increased number of crashes, 
carrying out such a diversion may not be very beneficial even though it may reduce travel time.   
 

The increase in the number of crashes per year for a site attributable to the change in flow 
and occupancy may be small, as can be seen from the developed graphs shown in Figures 21 
through 24.  The crashes used in developing these models occurred over a period of 2 years for 
sites 1 and 2 and 3 years for sites 3 and 4.  However, if diversions are made during the peak hour 
on several highways in a highway system, with no consideration to the results of this study, the 
total increase in the number of crashes attributable to diversions between the highways in the 
network can be significant.  Thus, the benefits of reduced crashes can be significant when the 
methodology developed in this study is implemented on a systemwide basis.  The following 
procedure can help incorporate crash risk in congestion mitigation strategies for a network of 
roads: 
 

1. Survey the entire network (including freeways and secondary roads), and divide it 
into zones with similar traffic and geometric characteristics.   

 
2. Randomly choose sample sites in each zone, and develop traffic flow and crash 

models.  
 
3. Compare these models for the different sites in the same zone, and develop general 

flow and crash models for each zone. 
 
4. Use the models developed for the different zones to identify how the total number of 

crashes can be expected to change with the different diversion strategies under 
consideration for the entire network (including the major highways and the secondary 
roads).  

 
5. If speed flow models are developed for the different zones, compare the changes in 

the traffic speed and travel time corresponding to different diversion strategies.  The 
decrease in average travel time can be compared with the change in the number of 
crashes to determine if the diversion strategy is feasible.   

 
6. If the crash rate and the critical crash rate can be determined for each zone within the 

network, develop the crash models using the crash rates instead of the number of 
crashes.  This will allow the engineer to determine if the proposed diversion will 
cause the crash rate to exceed the critical crash rate for the different zones in the 
network. 

 
 

CONCLUSIONS 
 
�� Traffic engineers can use the time mean speed directly from the detector stations in 

developing congestion mitigation strategies rather than converting it to space mean speed.   
 
�� There is a consistent relationship between flow and occupancy.   
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�� The models provide the engineer in the field with a decision-support tool to decide on 
diversion strategies that also consider the risk of crashes.   

 
�� There is a strong correlation between the number of crashes and the variance of speed.   
 
�� Although the specific models developed cannot be generalized for all freeway segments, it is 

feasible to develop congestion mitigation measures that incorporate crash risks.   
 
�� Because of the extensive data that will be required, only traffic engineers in the traffic 

management centers should be expected to carry out the method developed in this study   
 
�� Because of the detailed analysis required for applying this procedure, the appropriate models 

for interstate highways should be developed and made available first to traffic engineers at 
the traffic management centers. 

 
�� Congestion mitigation strategies should not be implemented without due consideration of the 

effect on crash occurrence.   
 

 
 

RECOMMENDATIONS 
 

1. Extend this study to include areawide models for different interstate highways in Virginia. 
 

2. Develop a user-friendly computerized procedure for incorporating crash risk in developing 
congestion mitigation strategies that can be implemented in the traffic management centers. 
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